12th Annual Milton Math Tournament
Varsity Power Question Solutions
November 20, 2004

In this power question we will use the following definition:  
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the number of distinct prime positive factors of n.  For instance, 
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.  Recall that 1 is not prime.  Throughout this question, assume all variables represent positive integers.  Assume that p is always prime.
Part I   (40 points)


a) Compute the values of the following:
i)  
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iv)  
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b) Explain why 
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Every prime number that divides n must also divide nk.  Any prime factor of nk must be found within an individual factor of 
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.  However, this implies that p must divide n.  So the set of primes that divide n are the exact same as that of nk, and 
[image: image10.wmf](

)

k

n

n

w

w

=

)

(

.

c)  Explain why, if a and b have no common factors, 
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Let p be a prime factor of ab.  Since p is prime, p | a or p | b, but not both, since a and b share no common factors.  Considering all p that divide ab, we can group them in this way, separating those that divide a and those that divide b.  Then we can count these two (disjoint) sets to yield the total count.  So 
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Part II  (40 points)
For this part, and the part afterward, note that given some factual statement A(n), the sum 
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 sums exactly those bn for which A(n) is true.  
For instance, 
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a) Recall that the notation p | n means "p divides n".  Explain why 
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Since 
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 counts the number of prime factors of n, we could instead proceed through the primes, checking to see which ones divide n.  Each time we find one, we add 1 to our count.  This is what the sum accomplishes.

b) Explain why 
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The sums on the left do the following:  for each 
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, we go through the primes and add 1 for each prime that divides n.  The sums on the right go through each prime one at a time and add 1 for each 
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 they divide.  The two results are the same.

c) Let p be fixed.  Explain why 
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The sum on the left adds 1 for every multiple of p that is less than or equal to x.  Note that 
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 are all less than or equal to x and multiples of p.  However, 
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, as well as all greater multiples.  So only the previously mentioned multiples of p should be counted, of which there are 
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d) Use parts (a), (b), and (c) above to show that 
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From part (b), 
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.  But from part (a) 
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.  So that 
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.  And by part (c), 
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Part III  (120 points)
In this part we will discover the "expected value" of 
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.  Let X be a fixed positive integer.  We define the random variable Y to be one of the numbers {1, 2, …, X}, each with equal probability.  Recall that expected value of a random variable R which can take values 
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Now we can consider the random variable 
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a) Using part (II d), show that 
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We have 
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.  And by part (IId), 
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b) Show that 
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Note that 
[image: image39.wmf]p

X

p

x

p

X

£

ú

û

ú

ê

ë

ê

£

÷

÷

ø

ö

ç

ç

è

æ

-

1

 and applying sums, 
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.  Dividing by X and recognizing the expression for E(W) gives 
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c) Given that, for large X, 
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Rearranging the inequality from part (b) above gives 
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.  For large X, the sum 
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