
JV Power Solutions

I.
a) When x−m ≤ 0, by definition, fm(x) = |x−m| = −(x−m) = m− x. Thus the statement
is true.

b) Since j > m and m > x implies that j > x, by the same logic as above, the statement is true.

c) When both j and x are less than m, there is no way to know the relation between x and j.
Therefore the statement is false.

d) Let x = m = n = 1. This yields S(x) = 0. Therefore the statement is false.

II.
a) Note that 1 < 31/17 < 2. Then, for 1 < x < 2 we have

S(x) = f1(x) + f2(x)

S(x) = |x− 1|+ |x− 2|

S(x) = (x− 1) + (2− x)

S(x) = 1

Thus S(31/17) = 1.

b) First we find an expression for S(x) when n = 3. We divide the number line into four intervals:
x ≤ 1, 1 < x < 2, 2 < x < 3, and x ≥ 3. For the first interval,

S(x) = (1− x) + (2− x) + (3− x) = 6− 3x

Likewise for the others,

S(x) = (x− 1) + (2− x) + (3− x) = 4− x

S(x) = (x− 1) + (x− 2) + (3− x) = x

S(x) = (x− 1) + (x− 2) + (x− 3) = 3x− 6

Then we graphically check the intersection of S and x in each interval. The only expression that
touches x in its interval is x. Therefore the solution occurs wherever S(x) is simplified to x. The
solution is 2 < x < 3.
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c) When x ≤ 1, fk(x) = k − x for all k, since k ≥ 1. Therefore, S(x) can be written

S(x) =
n∑

k=1

fk(x)

S(x) =
n∑

k=1

(k − x)

S(x) =
n∑

k=1

k −
n∑

k=1

x

S(x) =
n(n + 1)

2
− nx

d) When x ≥ n, fk(x) = x− k for all k, since k ≤ n. Therefore, S(x) can be written

S(x) =
n∑

k=1

fk(x)

S(x) =
n∑

k=1

(x− k)

S(x) =
n∑

k=1

x−
n∑

k=1

k

S(x) = nx− n(n + 1)
2

e) When 0 ≤ m− 1 ≤ x ≤ m, fk(x) = x− k for k ≤ m− 1. Likewise, fk(x) = k − x for k ≥ m.
Therefore, S(x) can be written

S(x) =
n∑

k=1

fk(x)

S(x) =
m−1∑

k=1

(x− k) +
n∑

k=m

(k − x)

S(x) =
m−1∑

k=1

(x− k) +
n∑

k=1

(k − x)−
m−1∑

k=1

(k − x)

S(x) = 2
m−1∑

k=1

(x− k) +
n∑

k=1

(k − x)

S(x) =

[
2x(m− 1)− 2

m(m− 1)
2

]
+

[
n(n + 1)

2
− xn

]
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S(x) = (2x−m)(m− 1) + n

(
n + 1

2
− x

)

III.
a) Rearrange the formula from part (II e).

S(x) = x
(
2(m− 1)− n

)
+

[
n(n + 1)

2
−m(m− 1)

]

It can be seen that on the interval m−1 ≤ x ≤ m, S(x) is linear, with a slope of
(
2(m−1)−n

)
.

We can see that small values of x (and thus small values of m) yield a negative value for the
slope. In fact, the slope is always negative until x = (n + 1)/2. To see this, let

n− 1
2

≤ x ≤ n + 1
2

Since m− 1 = (n− 1)/2, the slope is −1. When

n + 1
2

≤ x ≤ n + 3
2

m− 1 = (n + 1)/2, and so the slope is now 1.
As x increases, m− 1 increases, and so the slope stays positive (i.e., S(x) only grows). Likewise,
when x decreases, m − 1 must decrease along with the slope. As S(x) is decreasing when
x < (n + 1)/2 and increasing when x > (n + 1)/2, S(x) has a minimum at x = (n + 1)/2.
Now let x = m = (n + 1)/2. Using the formula from (II e),

S

(
n + 1

2

)
=

(
n + 1− n + 1

2

)(
n + 1

2
− 1

)
+ n

(
n + 1

2
− n + 1

2

)

S

(
n + 1

2

)
=

n2 − 1
4

b) Again we use the rearranged form of S(x):

S(x) = x
(
2(m− 1)− n

)
+

[
n(n + 1)

2
−m(m− 1)

]

The slope of S(x) is
(
2(m−1)−n

)
. When m−1 < n/2, the slope is negative. When m−1 > n/2,

the slope is positive. By the reasoning above, the minimum must occur when m− 1 = n/2 (and
the slope is 0). In other words, the minimum occurs when

n

2
≤ x ≤ n

2
+ 1
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which is what we wanted to show. To find the value of S(x) in this interval, note that the slope is
0, and thus the function is constant on [n/2, (n+2)/2]; so plugging in any value on that interval
will do the trick. We’ll use x = m = n/2.

S(n/2) = (n− n/2)(n/2− 1) + n

(
n + 1

2
− n/2

)

S(x) =
n2

4

c) Substitute for S(x) the expression you found in part (II c). Then

n(n + 1)
2

− nx = m−m2 +
n(n + 1)

2

x =
m2 −m

n

Since x ≤ 1,

m2 −m

n
≤ 1

m2 −m ≤ n

Therefore the lower bound on n is m2 −m.

d) Substitute for S(x) the expression you found in part (II d). Then

nx− n(n + 1)
2

= m−m2 +
n(n + 1)

2

x =
m−m2

n
+ n + 1

Since x ≥ n,
m−m2

n
+ n + 1 ≥ n

m−m2

n
≥ −1

m−m2 ≥ −n

m2 −m ≤ n

Thus the lower bound on n is m2 −m.
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e) When x ≤ 1, S(x) ≥ (n2 − n)/2. Likewise, when x ≥ n, S(x) ≥ (n2 − n)/2. Since S(x) is a
sum of absolute values, and absolute value functions are continuous, we can conclude that S(x)
is continuous as well. Note that, since n = 2(m − 1), n is even. By the result of part (III b),
n2/4 is a part of the range of S(x). Thus we can conclude that

S(x) ∈
[

n2

4
,
n2 − n

2

]

implies that x ∈ (1, n). We now only need to prove that

m−m2 +
n(n + 1)

2
∈

[
n2

4
,
n2 − n

2

]

to show that x ∈ (1, n). Thus,

n2

4
≤ m−m2 +

n(n + 1)
2

≤ n2 − n

2

−n2

4
≤ m−m2 +

n

2
≤ −n

2

n2 ≥ 4(m2 −m)− 2n ≥ 2n

Substitute 2(m− 1) for n.

4m2 − 8m + 4 ≥ 4m2 − 4m− 4m + 4 ≥ 4m− 4

4 ≥ 4 ≥ (4m− 4)− (4m2 − 8m)

4 ≤ 4m2 − 12m− 4

0 ≤ m2 − 3m + 2

0 ≤ (m− 1)(m− 2)

Which is true for all positive integers m.
Therefore, when n = 2(m− 1),

m−m2 +
n(n + 1)

2
∈

[
n2

4
,
n2 − n

2

]

and so the equation S(x) = m−m2 + n(n + 1)/2 is satisfied by some x ∈ (1, n).
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