JV Power Solutions
L
a) When © —m < 0, by definition, fp,(z) = |z —m| = —(r —m) = m — x. Thus the statement
is true.

b) Since j > m and m > x implies that j > x, by the same logic as above, the statement is true.

¢) When both j and x are less than m, there is no way to know the relation between x and j.
Therefore the statement is false.

d) Let x = m = n = 1. This yields S(x) = 0. Therefore the statement is false.

1I.
a) Note that 1 < 31/17 < 2. Then, for 1 < z < 2 we have

S(z) = fi(z) + fa(x)
S(z) =z — 1]+ |z —2|
S(z)=(z—1)+(2—x)
S(z) =1
Thus S(31/17) = 1.

b) First we find an expression for S(z) when n = 3. We divide the number line into four intervals:
r<1l,1<z<2 2<x<3,and x > 3. For the first interval,

Sz)=1-2)+2-2)+B—x2)=6—-3x

Likewise for the others,

S)=(xz-1)+2-2)+B—-z)=4—=x
Sx)=(x-1)+@x-2)+B—z)==

SE)=@-1D+x—-2)+(x—3)=32—-6

Then we graphically check the intersection of S and x in each interval. The only expression that
touches z in its interval is z. Therefore the solution occurs wherever S(z) is simplified to z. The
solution is 2 < x < 3.



c) When = < 1, fi(x) = k — « for all k, since k > 1. Therefore, S(z) can be written

k=1
S(z) = k— Z x
k=1 k=1
1
S(x) = n(n;— ) —nx

k=1
S(z) = Z x— Z k
k=1 k=1
S(x) =nx nin+1)

e) When 0 <m —1<z<m, fp(z) =2 —k for k <m — 1. Likewise, fx(z) =k — z for k > m.
Therefore, S(z) can be written




ITI.
a) Rearrange the formula from part (IT e).

n(n+1)

S(x):x<2(mfl)—n>+ 3 m(ml)]

It can be seen that on the interval m—1 < « < m, S(x) is linear, with a slope of (2(m —-1)— n)

We can see that small values of z (and thus small values of m) yield a negative value for the
slope. In fact, the slope is always negative until z = (n 4 1)/2. To see this, let

n—1 n+1
T
2 2

Since m — 1 = (n — 1)/2, the slope is —1. When

IA
IN

n+1 n+3
2 2
m —1=(n+1)/2, and so the slope is now 1.
As x increases, m — 1 increases, and so the slope stays positive (i.e., S(z) only grows). Likewise,
when = decreases, m — 1 must decrease along with the slope. As S(z) is decreasing when
x < (n+1)/2 and increasing when x > (n + 1)/2, S(z) has a minimum at = (n + 1)/2.
Now let = m = (n + 1)/2. Using the formula from (II e),

n—+1 n+1 n+1 n+1 n+1
n+1 n?—1
S( 2 )‘ 4

b) Again we use the rearranged form of S(x):

IN
8
IN

n(n+1)

5 —m(m — 1)1

S(x) = x<2(m -1) —n) +

The slope of S(x) is <2(m—1) —n). When m—1 < n/2, the slope is negative. When m—1 > n/2,
the slope is positive. By the reasoning above, the minimum must occur when m — 1 = n/2 (and
the slope is 0). In other words, the minimum occurs when

X
2_ =

|3

w



which is what we wanted to show. To find the value of S(z) in this interval, note that the slope is

0, and thus the function is constant on [n/2, (n+2)/2]; so plugging in any value on that interval
will do the trick. We’ll use z =m =n/2.

S(n/2) = (n—n/2)(n/2 — 1) + n<”;1 _ n/2>

c¢) Substitute for S(x) the expression you found in part (II ¢). Then

1 1
n(n+ )—nx:m—m2—|—n(n+ )
2 2
m2 —m
Tr =
n
Since x < 1,
2 _
m m§1
n

mz—mgn

Therefore the lower bound on n is m2 — m.

d) Substitute for S(x) the expression you found in part (II d). Then

nm—n(n+l)=m—m2 n(n+1)
2 2
m — m?
T = +n+1
Since x > n,
m — m?>
+n+1>n
n
2
m—m >
n

Thus the lower bound on n is m? — m.



e) When z < 1, S(x) > (n? — n)/2. Likewise, when x > n, S(x) > (n? —n)/2. Since S(z) is a
sum of absolute values, and absolute value functions are continuous, we can conclude that S(z)
is continuous as well. Note that, since n = 2(m — 1), n is even. By the result of part (III b),
n?/4 is a part of the range of S(z). Thus we can conclude that

implies that 2 € (1,n). We now only need to prove that

m—m2—|—

n(n+1) c n72 n?—n
2 47 2

to show that = € (1,n). Thus,

n? nn+1) _n?>-n
— <m—m? <
e
2
i<m_m2_~_ﬁ<;n
4 - 27 2

Substitute 2(m — 1) for n.

4m? — 8m +4 > 4m?* —dm — dm + 4 > 4m — 4
4>4> (4m —4) — (4m? — 8m)
4<4m? —12m —4
0<m?—3m+2
0<(m—-1)(m-2)

Which is true for all positive integers m.
Therefore, when n = 2(m — 1),

m—m

2_’_n(n—i—l) ﬁng—n
2 4’7 2

and so the equation S(x) = m —m? + n(n + 1)/2 is satisfied by some x € (1,n).



