JV Power Solutions

I.

a) When $x - m \le 0$, by definition, $f_m(x) = |x - m| = -(x - m) = m - x$. Thus the statement is **true**.

b) Since j > m and m > x implies that j > x, by the same logic as above, the statement is **true**.

c) When both j and x are less than m, there is no way to know the relation between x and j. Therefore the statement is **false**.

d) Let x = m = n = 1. This yields S(x) = 0. Therefore the statement is **false**.

II.

a) Note that 1 < 31/17 < 2. Then, for 1 < x < 2 we have

$$S(x) = f_1(x) + f_2(x)$$

$$S(x) = |x - 1| + |x - 2|$$

$$S(x) = (x - 1) + (2 - x)$$

$$S(x) = 1$$

Thus S(31/17) = 1.

b) First we find an expression for S(x) when n=3. We divide the number line into four intervals: $x \le 1, 1 < x < 2, 2 < x < 3,$ and $x \ge 3$. For the first interval,

$$S(x) = (1-x) + (2-x) + (3-x) = 6-3x$$

Likewise for the others,

$$S(x) = (x-1) + (2-x) + (3-x) = 4-x$$

$$S(x) = (x-1) + (x-2) + (3-x) = x$$

$$S(x) = (x-1) + (x-2) + (x-3) = 3x - 6$$

Then we graphically check the intersection of S and x in each interval. The only expression that touches x in its interval is x. Therefore the solution occurs wherever S(x) is simplified to x. The solution is 2 < x < 3.

c) When $x \leq 1$, $f_k(x) = k - x$ for all k, since $k \geq 1$. Therefore, S(x) can be written

$$S(x) = \sum_{k=1}^{n} f_k(x)$$

$$S(x) = \sum_{k=1}^{n} (k - x)$$

$$S(x) = \sum_{k=1}^{n} k - \sum_{k=1}^{n} x$$

$$S(x) = \frac{n(n+1)}{2} - nx$$

d) When $x \ge n$, $f_k(x) = x - k$ for all k, since $k \le n$. Therefore, S(x) can be written

$$S(x) = \sum_{k=1}^{n} f_k(x)$$

$$S(x) = \sum_{k=1}^{n} (x - k)$$

$$S(x) = \sum_{k=1}^{n} x - \sum_{k=1}^{n} k$$

$$S(x) = nx - \frac{n(n+1)}{2}$$

e) When $0 \le m-1 \le x \le m$, $f_k(x) = x-k$ for $k \le m-1$. Likewise, $f_k(x) = k-x$ for $k \ge m$. Therefore, S(x) can be written

$$S(x) = \sum_{k=1}^{n} f_k(x)$$

$$S(x) = \sum_{k=1}^{m-1} (x - k) + \sum_{k=m}^{n} (k - x)$$

$$S(x) = \sum_{k=1}^{m-1} (x - k) + \sum_{k=1}^{n} (k - x) - \sum_{k=1}^{m-1} (k - x)$$

$$S(x) = 2 \sum_{k=1}^{m-1} (x - k) + \sum_{k=1}^{n} (k - x)$$

$$S(x) = \left[2x(m-1) - 2 \frac{m(m-1)}{2} \right] + \left[\frac{n(n+1)}{2} - xn \right]$$

$$S(x) = (2x - m)(m - 1) + n\left(\frac{n+1}{2} - x\right)$$

III.

a) Rearrange the formula from part (II e).

$$S(x) = x(2(m-1) - n) + \left[\frac{n(n+1)}{2} - m(m-1)\right]$$

It can be seen that on the interval $m-1 \le x \le m$, S(x) is linear, with a slope of (2(m-1)-n). We can see that small values of x (and thus small values of m) yield a negative value for the slope. In fact, the slope is always negative until x = (n+1)/2. To see this, let

$$\frac{n-1}{2} \le x \le \frac{n+1}{2}$$

Since m-1=(n-1)/2, the slope is -1. When

$$\frac{n+1}{2} \le x \le \frac{n+3}{2}$$

m-1=(n+1)/2, and so the slope is now 1.

As x increases, m-1 increases, and so the slope stays positive (i.e., S(x) only grows). Likewise, when x decreases, m-1 must decrease along with the slope. As S(x) is decreasing when x < (n+1)/2 and increasing when x > (n+1)/2, S(x) has a minimum at x = (n+1)/2. Now let x = m = (n+1)/2. Using the formula from (II e),

$$S\left(\frac{n+1}{2}\right) = \left(n+1-\frac{n+1}{2}\right)\left(\frac{n+1}{2}-1\right) + n\left(\frac{n+1}{2}-\frac{n+1}{2}\right)$$
$$S\left(\frac{n+1}{2}\right) = \frac{n^2-1}{4}$$

b) Again we use the rearranged form of S(x):

$$S(x) = x(2(m-1) - n) + \left[\frac{n(n+1)}{2} - m(m-1)\right]$$

The slope of S(x) is (2(m-1)-n). When m-1 < n/2, the slope is negative. When m-1 > n/2, the slope is positive. By the reasoning above, the minimum must occur when m-1 = n/2 (and the slope is 0). In other words, the minimum occurs when

$$\frac{n}{2} \le x \le \frac{n}{2} + 1$$

which is what we wanted to show. To find the value of S(x) in this interval, note that the slope is 0, and thus the function is constant on [n/2, (n+2)/2]; so plugging in any value on that interval will do the trick. We'll use x = m = n/2.

$$S(n/2) = (n - n/2)(n/2 - 1) + n\left(\frac{n+1}{2} - n/2\right)$$
$$S(x) = \frac{n^2}{4}$$

c) Substitute for S(x) the expression you found in part (II c). Then

$$\frac{n(n+1)}{2} - nx = m - m^2 + \frac{n(n+1)}{2}$$
$$x = \frac{m^2 - m}{n}$$

Since $x \leq 1$,

Since $x \geq n$,

$$\frac{m^2 - m}{n} \le 1$$

$$m^2 - m \le n$$

Therefore the lower bound on n is $m^2 - m$.

d) Substitute for S(x) the expression you found in part (II d). Then

$$nx - \frac{n(n+1)}{2} = m - m^2 + \frac{n(n+1)}{2}$$
$$x = \frac{m - m^2}{n} + n + 1$$
$$\frac{m - m^2}{n} + n + 1 \ge n$$
$$\frac{m - m^2}{n} \ge -1$$
$$m - m^2 \ge -n$$

Thus the lower bound on n is $m^2 - m$.

 $m^2 - m \le n$

e) When $x \le 1$, $S(x) \ge (n^2 - n)/2$. Likewise, when $x \ge n$, $S(x) \ge (n^2 - n)/2$. Since S(x) is a sum of absolute values, and absolute value functions are continuous, we can conclude that S(x) is continuous as well. Note that, since n = 2(m-1), n is even. By the result of part (III b), $n^2/4$ is a part of the range of S(x). Thus we can conclude that

$$S(x) \in \left[\frac{n^2}{4}, \frac{n^2 - n}{2}\right]$$

implies that $x \in (1, n)$. We now only need to prove that

$$m - m^2 + \frac{n(n+1)}{2} \in \left[\frac{n^2}{4}, \frac{n^2 - n}{2}\right]$$

to show that $x \in (1, n)$. Thus,

$$\frac{n^2}{4} \le m - m^2 + \frac{n(n+1)}{2} \le \frac{n^2 - n}{2}$$
$$\frac{-n^2}{4} \le m - m^2 + \frac{n}{2} \le \frac{-n}{2}$$
$$n^2 > 4(m^2 - m) - 2n > 2n$$

Substitute 2(m-1) for n.

$$4m^{2} - 8m + 4 \ge 4m^{2} - 4m - 4m + 4 \ge 4m - 4$$

$$4 \ge 4 \ge (4m - 4) - (4m^{2} - 8m)$$

$$4 \le 4m^{2} - 12m - 4$$

$$0 \le m^{2} - 3m + 2$$

$$0 < (m - 1)(m - 2)$$

Which is true for all positive integers m.

Therefore, when n = 2(m-1),

$$m - m^2 + \frac{n(n+1)}{2} \in \left[\frac{n^2}{4}, \frac{n^2 - n}{2}\right]$$

and so the equation $S(x) = m - m^2 + n(n+1)/2$ is satisfied by some $x \in (1, n)$.